Forward Lighting: Problems, Research, Countermeasures

Michael Perel Santokh Singh NHTSA

SAE Gov/Industry Meeting, 2003

OUTLINE

- Glare complaints and problems
- Differences between HID and Halogen headlamps
- Factors affecting Discomfort and Disability glare
- Hypotheses about glare complaints
- Preliminary research findings
- Future research directions

Forward Lighting Glare Concerns

- Over 4600 responses to request for comments on glare
- Public wanted reduced glare from:
 - Auxiliary Lamps
 - Fog Lamps
 - Driving Lamps
 - Auxiliary Low Beam Lamps
 - High-mounted headlamps
 - High Intensity Discharge (HID) Lamps

Glare Consequences Identified by Public

- Causes annoyance and road rage
- Reduces vision
- Increases difficulty of using mirrors
- Distracts drivers; Causes eyes to look away from road
- Causes drivers to stop driving at night
- It hurts the eyes
- Causes fear of being in crash

National Survey

Glare has been:

- -Cause of crash, Near Miss
- -Disturbing
- -Noticeable but Acceptable
- -Barely Noticeable
- -Not Noticeable

From Bureau of Transportation Statistics, 2002 (sample size~4321)

Oncoming Glare Rated 'Disturbing' by Each Age Group

From Bureau of Transportation Statistics, 2002 Sample size ~ 1373

Key Research Questions

- Why are drivers complaining about headlamp glare?
- What rulemaking options might reduce glare problems?
 - New photometric specifications
 - Reduced mounting height
 - Improved aim (static and dynamic)
 - Others (e.g., washing systems, lamp color)

HID vs Halogen

Ford F-150 with factory equipped halogen headlamps
Halogen

•Color

Blue/white vs. Yellow

Vertical IntensityGradient

Sharp vs. Gradual

Horizontal Intensity

Wide spread vs. limited spread

Observations about lamp intensity distributions

- Maximum intensities of HID and Halogen overlap
- Variability in photometrics within and between lamp types
- Median values show higher intensities for HID below horizontal and away from straight ahead direction
- Questions remain about differences in illuminance at oncoming drivers eyes when lamps are at different heights, misaimed, on curves, and on hills

Lens Optics:

2003 Mercedes Benz E/C Class

Projector optics: 2002 Audi A6

Lamp Design Differences

 Lamp size (luminous area)

HID Halogen

Aiming methods

From UMTRI research, 2002

Two Types of Glare

Discomfort

Subjective, measured w/De Boer scale

Just Noticeable		Satisfactory		Just acceptable		Disturbing		Unbearable
9	8	7	6	5	4	3	2	1

- Influenced by: illuminance from glare source, task difficulty, ambient brightness, angle from line of sight
- May affect performance through distraction and eye strain

Disability

- Direct effect on visibility distance
- Increases with glare intensity, driver age, and smaller angle from line of sight

Hypotheses

- HID Blue color: Novelty attracts attention
- HID Blue color: Eyes more sensitive
- Wider Beam Pattern: Drivers exposed to glare longer during meeting scenarios
- Sharper intensity gradients: More sensitive to misaim, flickering
- Smaller lamps: Brighter luminance

NHTSA Glare Research

at U of Iowa (completion: Summer, 2003)

- 1. Obtain photometric and spectral distributions of a sample of HID and halogen low beams
- 2. Use computer model to compare glare and visibility for HID and halogen beam patterns in different meeting scenarios
- 3. Conduct on-road eye-fixation study to find out if drivers take longer and more frequent looks at blue headlights

Preliminary Results of Eye Fixation Study

Headlamp Type

NHTSA Research

(at Rensselaer's Lighting Research Center, completion 6/2003)

Measure effects of spectral distribution, lamp size, and illuminance on glare and seeing distance

- Illuminance: 0.2, 1, 5 lx (500, 2500, 12500 cd)
- Spectrum: halogen, blue-filtered halogen, HID
- Size/luminance: 9 cm²/1400000 cd/m², 26 cm²/480000 cd/m², 77 cm²/ 160000 cd/m²

Preliminary Findings

	Disability Glare	Discomfort Glare
Illuminance	Significant	Significant
Spectrum	Not Significant	<i>HID</i> Significant
Size	Not Significant	Not significant But trend

Preliminary Conclusions: Intensity, Spectrum, Lamp Size

- Current FMVSS method to photometer lamp intensity seems sufficient to predict disability glare for foveal and peripheral vision
- For discomfort glare,
 - illuminance has greatest effect (implications for beam intensity and aiming)
 - spectrum is much smaller effect (HID more discomforting)
 - size much less so

NHTSA Research

(at Rensselaer's Lighting Research Center, completion 6/2003)

Evaluate feasibility of a glare limiting adaptive headlight system which reduces intensity as a function of ambient lighting

Objectives:

- Investigate how low headlamp intensity could be reduced on lighted roads while maintaining drivers' visual performance
- Determine improvement in discomfort and disability glare

Future Glare Research

 Use photo-logging technique to study real world glare exposure and effects on driving behaviors (2003-04)

Future Research (2003-04)

- Determine effect of duration & intensity of HID glare exposure on driver re-adaptation time
- Quantify the level of misaim of different headlamp designs; assess effect of lens dirt
- Further exploration of Adaptive Forward Lighting to determine whether it can increase visibility and reduce glare
- Evaluate safety implications of other new lighting technologies, e.g., LED headlights